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Quartz Crystal Resonators Convert
Analog Forces to Digital Outputs
with Parts per Billion Resolution
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Nano-Resolution Full-scale PSD Spectrum for
Pressure Sensors, Accelerometers, & Tiltmeters



GoalsGoals
Improved disaster warning times for earthquakes, tsunamis, volcanic 
eruptions and extreme weather events

Improved geodetic measurements for scientific research and 
predictions of natural disasters

Improved disaster warning times for earthquakes, tsunamis, volcanic 
eruptions and extreme weather events

Improved geodetic measurements for scientific research and 
predictions of natural disasters

“Geophysical measurements can now be made with unprecedented 
clarity from beneath the seafloor, to the ocean bottom, through the 
water column, and through the atmosphere in a single coherent array”

John Delaney   

SolutionsSolutions



Quartz Sensors Solutions for ImprovedQuartz Sensors Solutions for Improved
Disaster Warning Systems and GeodesyDisaster Warning Systems and Geodesy

• Pressure Sensors

• Triaxial Accelerometers

• Tiltmeters

• Nano-Resolution Electronics

• In-situ Calibration Methods

Measurements in Boreholes on Land

Measurements on the Sea-floor

Measurements in Boreholes 
Underneath the Sea-floor

Measurements on the Surface of 
Land and Through the Atmosphere





Examples of NanoExamples of Nano--Resolution MeasurementsResolution Measurements
Atmospheric
Measure absolute barometric pressure fluctuations to nano-bars for 
infrasound detection of tsunamis, extreme weather, & eruptions.

Oceanic
Measure water level fluctuations to microns with absolute deep-sea 
depth sensors for detection of tsunamis and seafloor movement.

Seismic
Measure acceleration to nano-g’s with 3 g full-scale strong motion 
sensors and tilt to less than 1 nano-radian with +/- 9 degrees Quartz 
Tiltmeters.

Atmospheric
Measure absolute barometric pressure fluctuations to nano-bars for 
infrasound detection of tsunamis, extreme weather, & eruptions.

Oceanic
Measure water level fluctuations to microns with absolute deep-sea 
depth sensors for detection of tsunamis and seafloor movement.

Seismic
Measure acceleration to nano-g’s with 3 g full-scale strong motion 
sensors and tilt to less than 1 nano-radian with +/- 9 degrees Quartz 
Tiltmeters.
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Atmospheric Measurements
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Pacific Ocean Microbaroms Using IIR FilterPacific Ocean Microbaroms Using IIR Filter

Residual Noise Between Two Independent Barometers = 0.4 mPa
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Sakurajima Eruption Measured 1000 km Away at Nuclear Test Monitoring Site

Photo Courtesy of Martin Rietze
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Infrasound Detection of TsunamisInfrasound Detection of Tsunamis

Plot courtesy of Dr. Nobuo Arai



Infrasound signals associated with the outer-rise 
earthquake of Oct. 25, 2013 were detected.

Outer‐rise earthquake (Mw=7.1)  2013/10/25 17:10 (UTC) , 10/26 02:10 (JST)
Observed tsunamis : Kuji 18:23 (UTC) 40 cm & Souma 18:38 (UTC) 40 cm 
Outer‐rise earthquake (Mw=7.1)  2013/10/25 17:10 (UTC) , 10/26 02:10 (JST)
Observed tsunamis : Kuji 18:23 (UTC) 40 cm & Souma 18:38 (UTC) 40 cm 
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System for Monitoring the Acoustic Signals of Snow Avalanches

15
6000-16B (Paroscientific)
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Monitoring Severe Weather with
Infrasound Observation Network



Tornado detection with Nano Baro
 UMass - CASA radar network in Oklahoma

 The main objectives of CASA’s Oklahoma radar network was tornado early detection
 It had been shown (e.g., Bedard) that tornadoes produce infrasound (~1Hz sound waves)
 We deployed infrasound arrays at two of the Oklahoma radar sites

 Results (presented at AMS in New Orleans and the EGU in Vienna)
 Verified the ability of the Paroscientific barometers to detect distant tornadoes
 Verified the ability of the Paroscientific barometers to detect wind turbine infrasound emissions

Infrasound signature from a tornado Infrasound signature from a windfarm
Courtesy of David Pepyne
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GPS Meteorology

GPS Determination of Precipitable Water Vapor

• Measure Total Delay = Ionospheric + Neutral Delays
• Ionospheric Delay (frequency dependent) determined by 

comparing L1 & L2 GPS signals
• Neutral Delay=Wet Delay + Hydrostatic Delay   

(Barometric Pressure, Temperature, Humidity dependent)
• Calculate Precipitable Water Vapor from Wet Delay



GPS-MET and Nano Baro for Flood 
Forecasting

 Improved flood forecasting 
benefits from a radar network  
coupled with a hydrologic model

 A key variable for precipitation 
forecasting is atmospheric water 
content

 High spatial-temporal resolution 
estimates of atmospheric water 
content can be made with GPS-
meteorology

Dallas Floodway

Street flooding North of DFW, Jan. 2012

Courtesy of David Pepyne
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Oceanic Measurements
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Photos and Diagrams courtesy of N.O.A.A.

DART Data Buoy Tsunami Warning System
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Comparison Comparison NanoNano--Resolution Depth SensorResolution Depth Sensor / BPR/ BPR (with offset)(with offset)
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Tohoku Tsunami Measured in Monterey Tohoku Tsunami Measured in Monterey 
California with NanoCalifornia with Nano--Resolution Depth SensorResolution Depth Sensor



3-9 Precursor to 3-11 Tsunami

Plot courtesy of Dr. Ryota Hino
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DONET Bottom Pressure during the 2011 Tohoku Earthquake

A-2

A-3

A-4

B-5

B-6

B-8

C-9

D-16

E-17

E-18

▋Originals
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Seismic Measurements

Quartz Seismic Sensors, Inc.



Quartz Triaxial Accelerometers & TiltmetersQuartz Triaxial Accelerometers & Tiltmeters

Applications:

 Land-based earthquake detection and geodetic research

 Ocean-based measurements for tsunami warning systems and geodesy

 Seismo-acoustic measuring systems with nano-resolution barometers

Advantages:

 Parts-per-billion resolution over a broad spectrum

 High ranges to measure strongest events (no clipping)

 High accuracy and low power consumption (1 ma at 3.6 V)

 In-situ 1 G referenced calibration methods to eliminate drift

 Excellent long-term stability and insensitivity to environmental errors

Applications:

 Land-based earthquake detection and geodetic research

 Ocean-based measurements for tsunami warning systems and geodesy

 Seismo-acoustic measuring systems with nano-resolution barometers

Advantages:

 Parts-per-billion resolution over a broad spectrum

 High ranges to measure strongest events (no clipping)

 High accuracy and low power consumption (1 ma at 3.6 V)

 In-situ 1 G referenced calibration methods to eliminate drift

 Excellent long-term stability and insensitivity to environmental errors



M9 Honshu Earthquake 11 Mar 2011 05:50-06:50 UTC
Recorded with Nano-Resolution Accelerometer in Seattle, WA USA
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Earth Tides Measured with NanoEarth Tides Measured with Nano--
Resolution Quartz Accelerometer Resolution Quartz Accelerometer 

Plots courtesy of Dr. Yuichi Imanishi
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InIn--situ Calibration Methods forsitu Calibration Methods for
Improved Geodetic MeasurementsImproved Geodetic Measurements

Stable Long-term Measurements of Earth Movement to 
1 cm/year Using Drift Compensation of Absolute Depth 
Sensors and/or Triaxial Accelerometers for Tilt

Depth Sensor Stability Referenced to Internal OBS Atmospheric 
Pressure ( A-0-A Calibration Method )

1 G Referenced Seismology ( Triaxial Accelerometer Axes 
Compared to the Invariant 1 G Gravity Vector )

Stable Long-term Measurements of Earth Movement to 
1 cm/year Using Drift Compensation of Absolute Depth 
Sensors and/or Triaxial Accelerometers for Tilt

Depth Sensor Stability Referenced to Internal OBS Atmospheric 
Pressure ( A-0-A Calibration Method )

1 G Referenced Seismology ( Triaxial Accelerometer Axes 
Compared to the Invariant 1 G Gravity Vector )



InIn--situ Calibration Methods forsitu Calibration Methods for
Improved Geodetic MeasurementsImproved Geodetic Measurements

Depth Sensor Stability Referenced to Internal OBS
Atmospheric Pressure Using A-0-A Calibration Method

Depth Sensor Stability Referenced to Internal OBS
Atmospheric Pressure Using A-0-A Calibration Method

Drift at Full Scale (A = 100 MPa), Drift at 0 (8 points linearly connected) & Residuals
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InIn--situ Calibration Methods forsitu Calibration Methods for
Improved Geodetic MeasurementsImproved Geodetic Measurements

Triaxial Acceleration Vector Referenced to 1 G of EarthTriaxial Acceleration Vector Referenced to 1 G of Earth
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Quartz Crystal Pressure Sensors, Triaxial Quartz Crystal Pressure Sensors, Triaxial 
Accelerometers, and Tiltmeters  provide:Accelerometers, and Tiltmeters  provide:

Improved disaster warning times for earthquakes, 
tsunamis, volcanic eruptions and extreme weather events

Improved geodetic measurements for scientific research 
and predictions of natural disasters

Low-cost measurement solutions for new and existing 
cabled, remote, and mobile platforms

Improved disaster warning times for earthquakes, 
tsunamis, volcanic eruptions and extreme weather events

Improved geodetic measurements for scientific research 
and predictions of natural disasters

Low-cost measurement solutions for new and existing 
cabled, remote, and mobile platforms
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4500 148th Ave. N.E.4500 148th Ave. N.E.

Redmond, WA 98052Redmond, WA 98052

www.paroscientific.comwww.paroscientific.com


